Publications

(Note: Where open access rights have not been purchased from the journal, a pre-print link to the manuscript is provided)

[1] Drung, D. & Krause, C. Ultrastable Low-Noise Current Amplifiers With Extended Range and Improved Accuracy. IEEE Transactions on Instrumentation and Measurement 66, 1425-1432 (2017).
http://dx.doi.org/10.1109/TIM.2016.2611298 (open access)

[2] Brun-Picard, J., Djordjevic, S., Leprat, D., Schopfer, F. & Poirier, W. Practical Quantum Realization of the Ampere from the Elementary Charge. Physical Review X 6, 41051 (2016).
http://dx.doi.org/10.1103/PhysRevX.6.041051 (open access)

[3] Stein, F. et al. Robustness of single-electron pumps at sub-ppm current accuracy level. Metrologia 54, S1-S8 (2016).
http://dx.doi.org/10.1088/1681-7575/54/1/S1 (open access)

[4] Krause, C., Drung, D. & Scherer, H. Measurement of sub-picoampere direct currents with uncertainties below ten attoamperes. Review of Scientific Instruments 88, 024711 (2017).
http://dx.doi.org/10.1063/1.4975826 (open access)

[5] Zhao, R. et al. Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping. Physical Review Applied 8, 44021(2017).
http://dx.doi.org/10.1103/PhysRevApplied.8.044021 (pre-print)

[6] Yamahata, G., Giblin, S. P., Kataoka, M., Karasawa, T. & Fujiwara, A. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump. Scientific Reports 7, 45137 (2017)
http://dx.doi.org/10.1038/srep45137(open access)

[7] Giblin, S. P., Bae, M.-H., Kim, N., Ahn, Y.-H. & Kataoka, M. Robust operation of a GaAs tunable barrier electron pump. Metrologia 54, 299-306 (2017).
http://dx.doi.org/10.1088/1681-7575/aa634c (open access)

[8] Clapera, P. et al. Design and Operation of CMOS-Compatible Electron Pumps Fabricated With Optical Lithography. IEEE Electron Device Letters 38, 414-417 (2017).
http://dx.doi.org/10.1109/LED.2017.2670680 (pre-print)

[9] Li, Z. et al. Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures. Semiconductor Science and Technology 32, 075001 (2017).
http://dx.doi.org/10.1088/1361-6641/aa6910 (open access)

[10] Ahn, Y.-H. et al. Upper frequency limit depending on potential shape in a QD-based single electron pump. Journal of Applied Physics 122, 194502 (2017).
http://dx.doi.org/10.1063/1.5000319 (open access)

[11] Scherer, H., Drung, D., Krause, C., Götz, M. & Becker, U. Electrometer Calibration With Sub-Part-Per-Million Uncertainty. IEEE Transactions on Instrumentation and Measurement 68, 1887-1894 (2019).
http://dx.doi.org/10.1109/TIM.2019.2900129 (open access)

[12] Rossi, A. et al. Gigahertz Single-Electron Pumping Mediated by Parasitic States. Nano Letters 18, 4141-4147 (2018).
http://dx.doi.org/10.1021/acs.nanolett.8b00874 (pre-print)

[13] Ahn, Y.-H. et al. Parallelized Single Electron Pumps Based on Gate-Tunable Quantum Dot. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) (2018). doi:10.1109/cpem.2018.8501249
http://dx.doi.org/10.1109/CPEM.2018.8501249 

[14] Liu, F. et al. Manipulation of random telegraph signals in a silicon nanowire transistor with a triple gate. Nanotechnology 29, 475201 (2018).
http://dx.doi.org/10.1088/1361-6528/aadfa6 (open access)

[15] Saito, S. et al. Quantum Dipole Effects in a Silicon Transistor under High Electric Fields. Journal of the Physical Society of Japan 87, 094801 (2018).
http://dx.doi.org/10.7566/jpsJ.87.094801 (open access)

[16] Li, Z. et al. Random telegraph noise from resonant tunnelling at low temperatures. Scientific Reports 8, (2018).
http://dx.doi.org/10.1038/s41598-017-18579-1 (open access)

[17] Li, Zuo Single electron manipulation in silicon nanowires for quantum technologies, PhD thesis, University of Southampton
http://dx.doi.org/10.5258/SOTON/T0019 (open access)

[18] Johnson, N. et al. LO-Phonon Emission Rate of Hot Electrons from an On-Demand Single-Electron Source in a GaAs/AlGaAs Heterostructure. Physical Review Letters 121, 137703 (2018).
http://dx.doi.org/10.1103/PhysRevLett.121.137703 (pre-print)

[19] Götz, M., Drung, D., Krause, C., Becker, U. & Scherer, H. Calibrating Ultrastable Low-Noise Current Amplifiers of the Second Generation With a Cryogenic Current Comparator. IEEE Transactions on Instrumentation and Measurement 68, 2027-2033 (2019).
http://dx.doi.org/10.1109/TIM.2018.2884060 (open access)

[20] Erkan, O., Gulmez, Y., Hayirli, C., Gulmez, G. & Turhan, E. Reference Ultralow DC Current Source Between 1 fA and 100 pA at TUBITAK UME. IEEE Transactions on Instrumentation and Measurement 68, 2201-2207 (2019).
http://dx.doi.org/10.1109/TIM.2019.2895435  (pre-print)

[21] Giblin, S. P., Drung, D., Götz, M. & Scherer, H. Interlaboratory Nanoamp Current Comparison With Subpart-Per-Million Uncertainty. IEEE Transactions on Instrumentation and Measurement 68, 1996-2002 (2019).
http://dx.doi.org/10.1109/TIM.2018.2879126 (pre-print)

[22] Giblin, S. et al. Evidence for universality of tunable-barrier electron pumps. Metrologia (2019). doi:10.1088/1681-7575/ab29a5
http://dx.doi.org/10.1088/1681-7575/ab29a5 (pre-print)

[23] Giblin, S. P. Re-evaluation of uncertainty for calibration of 100 MOhm and 1 GOhm resistors at NPL. Metrologia 56, 015014 (2018).
http://dx.doi.org/10.1088/1681-7575/aaf52d

[24] Giblin, S. P. & Lorusso, G. Exploring a new ammeter traceability route for ionisation chamber measurements. Review of Scientific Instruments 90, 014705 (2019).
http://dx.doi.org/10.1063/1.5052717 (pre-print)

[25] Scherer, H. & Schumacher, H. W. Single €Electron Pumps and Quantum Current Metrology in the Revised SI. Annalen der Physik 531, 1800371 (2019).
http://dx.doi.org/10.1002/andp.201800371 (open access)

[26] Krause, C., Drung, D., Götz, M. & Scherer, H. Noise-optimized ultrastable low-noise current amplifier. Review of Scientific Instruments 90, 014706 (2019).
http://dx.doi.org/10.1063/1.5078572 (open access)

[27] Poirier, W., Djordjevic, S., Schopfer, F. & Thévenot, O. The ampere and the electrical units in the quantum era. Comptes Rendus Physique 20, 92-128 (2019).
http://dx.doi.org/10.1016/j.crhy.2019.02.003 (open access)

[28] Wenz, T. et al. Quantum dot state initialization by control of tunneling rates. Physical Review B 99, 201409 (2019).
http://dx.doi.org/10.1103/PhysRevB.99.201409 (open access)

[29] Gerster, T. et al. Robust formation of quantum dots in GaAs/AlGaAs heterostructures for single-electron metrology. Metrologia 56, 014002 (2018).
http://dx.doi.org/10.1088/1681-7575/aaf4aa (open access)

 

Talks

Random-Telegraph-Noise by Resonant Tunnelling at Low Temperatures
Z. Li, M. Sotto, F. Liu, M. K. Husain, Z. K. Ioannis, H. Yoshimoto, K. Tani. Y. Sasago, D. Hisamoto, J. Fletcher, M. Kataoka, Y. Tsuchiya, and S. Saito
IEEE Electron Devices Technologies and Manufacturing Conference, Japan, February 2017

Transport properties in silicon nanowire transistors with atomically flat interfaces
F. Liu, M. K. Husain, Z. Li, M. Sotto, D. Burt, J. Fletcher, M. Kataoka, Y. Tsuchiya, and S. Saito
IEEE Electron Devices Technologies and Manufacturing Conference, Japan, February 2017

Novel Transport Properties in Quantum Confined Silicon Channels at Low Temperatures
S. Saito, Z.. Li, and M. Sotto, F. Liu, M. K. Husain, and Y. Tsuchiya
Chemistry, Physics, and Applications of Coordination Nanosheets (UK-Japan Workshop, Cambridge, 2016), United Kingdom, 2016

Cable noise investigations for high-accuracy measurements of small direct currents
C. Krause, H. Scherer, and D. Drung
30th Conf. Precision Electromagnetic Measurements (CPEM) 2016, Canada, July 2016

Improved calibration of instruments for small direct currents
H. Scherer, D. Drung, and C. Krause
30th Conf. Precision Electromagnetic Measurements (CPEM) 2016, Canada, July 2016

Ultrastable low-noise current amplifiers with extended range and improved accuracy
D. Drung and C. Krause
30th Conf. Precision Electromagnetic Measurements (CPEM) 2016, Canada, July 2016

Robustness of single-electron pumps at sub-ppm level
F. Stein, R. Behr, M. Goetz, E. Pesel, T. Weimann, K. Pierz, H. W. Schumacher, and F. Hohls
30th Conf. Precision Electromagnetic Measurements (CPEM) 2016, Canada, July 2016

Accuracy verification of single-electron pumps with 0.2 ppm uncertainty
F. Stein, T. Gerster, R. Behr, M. Goetz, E. Pesel, T. Weimann, K. Pierz, H. W. Schumacher, and F. Hohls
30th Conf. Precision Electromagnetic Measurements (CPEM) 2016, Canada, July 2016

Transfer statistics of an array of single electron pumps
N. Ubbelohde, D. Reifert, L. Freise, F. Hohls, R. Dolata, T. Weimann, K. Pierz, A. Zorin, and H. W. Schumacher
33rd International Conference on the Physics of Semiconductors (ICPS) 2016, China, August 2016

Single-electron pumps based on GaAs/AlGaAs heterostructures – systematic investigation of design parameters
T. Gerster, N. Ubbelohde, A. Müller, F. Stein, E. Pesel, H. W. Schumacher, and F. Hohls
42nd Micro and Nano Engineering (MNE) 2016, Austria, September 2016

Practical quantum realization of the ampere from the elementary charge
J. Brun-Picard, S. Djordjevic, D. Leprat, F. Schopfer, and W. Poirier
CPEM 2016, Canada, July 2016

Practical quantum realization of the ampere from the elementary charge
J. Brun-Picard, S. Djordjevic, D. Leprat, F. Schopfer, and W. Poirier
GDR Meso 2016, France, December 2016

Universality of the tunable-barrier electron pump at the part-per-million level
S. P. Giblin, M. -H. Bae, G. Yamahata, P. See, J. D. Fletcher, T. J. B. M. Janssen, N. Kim, A.Fujiwara, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, C. Krause, F. Stein, and M. Kataoka
CPEM, Canada, July 2016

Scaling the current from a GHz electron pump using a CCC
S. P. Giblin, G. Yamahata, J. M. Williams, S. Rozhko, T. J. B. M. Janssen, A. Fujiwara, and M. Kataoka
CPEM, Canada, July 2016

Electron pumps and the redefiniton of the SI system
Stephen Giblin
Quantum Science Symposium, United Kingdom, November 2016

Time-resolved detection of single-electron wave packets
Jon Fletcher and Masaya Kataoka
JMC15: Toward flying Qbits: a mini-colloque on ultrafast quantum nanoelectronics, France, August 2016

 


Funding statement:
The results in this paper come from the project EMPIR 15SIB08 e-SI-Amp.
This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Publicity resources – repository instructions and EURAMET logos

Error thrown

Call to undefined function simplexml_load_string()