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Abstract  —  We summarize the results of precision 

measurement campaigns on semiconductor tunable-barrier 
electron pumps undertaken at NPL, over the last 5 years. We have 
investigated pumps of 3 different designs, fabricated in GaAs and 

silicon and operated on the 1-electron plateau at frequencies from 
230 MHz to 1 GHz. For all measurements we find the pump 
current equal to e×f within the 1 ppm standard uncertainty of the 

current measurement. This accumulated data strongly suggests 
that accurate quantized operation of the tunable-barrier pump is 
a universal property, insensitive to the detailed design of the 

device. The data includes previously unpublished results. 

Index Terms — Electron pump, current standard, small current, 
primary electrical standard. 

I. INTRODUCTION 

Clock-controlled transfer of single electrons in a nano-

structured device is a direct and conceptually simple method of 

generating a primary reference current. Precision 

measurements on semiconductor tunable-barrier pumps [1]-[3] 

have demonstrated current quantisation accuracy at the level of 

1 µA/A or better, and these devices are currently the focus of 

research efforts at many institutes worldwide. 

While the operation of the tunable-barrier pump is believed 

to be described by universal physics [4], nano-fabrication 

technology provides a range of materials and methods for 

realizing the electron pump in practice. If the electron pump is 

to be adopted as a primary standard of current, it is necessary to 

show that accurate operation of the pump is indeed a universal 

property of the underlying physics, and not specific to one 

device design or material. 

II. ELECTRON PUMP DEVICES 

We report 6 high-accuracy measurements on 3 different 

tunable-barrier electron pump designs, which are denoted by 

the institute leading the work on each design: ‘NPL’, ‘KRISS’ 

and ‘NTT’. The NPL [1] and KRISS [2] samples are both 

fabricated using a Gallium Arsenide (GaAs) heterostructure, in 

which a 2-dimensional electron gas is formed below the sample 

surface. In contrast, the NTT pump [5] uses a silicon MOSFET 

architecture in which the electron density is controlled by a 

global top gate fabricated on top of the barrier gates. The NPL 

and KRISS pumps differ as follows: in the KRISS sample, 

confinement of the electrons is achieved solely through the use 

of electrostatic surface gates [2], whereas the NPL pump 

additionally uses a wet-chemical etching step to define a 2 µm-

wide conducting channel prior to the patterning of surface gates 

[1].  

 

The 6 measurements, in chronological order, were as follows: 

1. NPL GaAs pump at 300 mK, result reported in [1]. 

2. KRISS GaAs pump at 300 mK, result reported in [2]. 

3. NPL GaAs pump at 300 mK, unpublished 

measurement on a different sample to that of ref. [1]. 

4. KRISS GaAs pump, a different sample to 

measurement 2, at the higher temperature of 1.3 K, 

paper in preparation. 

5. Repeat of measurement 4 using the ultrastable low 

noise current amplifier (ULCA) [6] to measure the 

pump current. 

6. NTT silicon pump, paper in preparation. 

 

The pumps were cooled in a helium-3 cryostat with base 

temperature 300 mK, although for some of the measurements 

the helium-3 was not condensed, resulting in an elevated 

temperature 1.3 K. For all measurements, the pump gate 

voltages were tuned to the 1-electron plateau and the RF gate 

was driven at a frequency f. The current IP was measured, and 



we define the deviation of IP from its expected quantized value 

as ΔIP = (IP-ef)/ef, where e is the electron charge. 

III.  CURRENT MEASUREMENT TECHNIQUES 

All measurements apart from no. 5 were made using the NPL 

current measurement system, which has already been described 

in detail in ref. [1]. The unknown electron pump current IP is 

traceable to a 1 G resistor, and a voltage measured by a 

precision DVM calibrated directly against a Josephson array. A 

typical type A uncertainty for a 15 hour measurement of IP=150 

pA is 0.2 µA/A. The overall uncertainty in measuring IP is 1 

µA/A, dominated by the 0.8 µ/ type B uncertainty in the 1 

G resistor calibration (all reported uncertainties are standard 

1σ uncertainties). In principle, a lower overall uncertainty for IP 

≥ 200 pA could be achieved using a 100 M resistor [7], but 

this has not yet been used due to inadequate short-term stability 

of available thick-film resistance standards [8].  

 

Measurement number 5 was made using an (ULCA) [6] 

calibrated at PTB. This device has demonstrated a trans-

resistance gain stability of 10-7 over time-scales of several 

weeks [6], and a transport stability of better than 10-6 in an inter-

laboratory comparison [8]. Unfortunately, a short measurement 

time meant that the uncertainty of measurement 5 was 

dominated by the type A component, and the low total 

uncertainty available using the ULCA [3] was not realized. 

IV. RESULTS 

In Fig. 1 we plot ΔIP for measurements 1-6 in chronological 

order. For all measurements apart from nos. 3 and 5, the value 

plotted was an average of measurements over a range of tuning 

parameters for which IP was invariant in the tuning parameter 

(a ‘flat plateau’). For measurements 3 and 5, the value plotted 

was obtained from a single measurement at one set of values of 

the tuning parameters. 

All pumps demonstrated accurate quantization within the 

measurement uncertainty. We make two further observations: 

Firstly, the optimal gate voltage tuning generally could not be 

predicted solely by fitting to low resolution measurements as 

was done in [1]. Secondly, for all pumps, the quantization 

deteriorated dramatically above some critical frequency. The 

reported measurements were made at the highest frequency for 

which flat plateaus were observed over a reasonable range of 

gate tuning parameters. 

V. CONCLUSION  

We find that current quantization at the 1 µA/A level is a 

robust property of optimally tuned semiconductor tunable-

barrier pumps operated at f ≤ 1 GHz. 
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Figure 1. Summary of pump current for 6 precision measurements 

ordered chronologically. The pumping frequency is indicated next to 

each data point. Open (closed) points denote a temperature of 0.3 (1.3) 

K. Error bars show the total uncertainty.


