

Scaling the current from a GHz electron pump using a CCC

Stephen Giblin

CPEM, 13th July 2016

Silicon electron pump @ 2 GHz

APPLIED PHYSICS LETTERS 109, 013101 (2016)

Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 10⁷

Gento Yamahata,^{1,a)} Stephen P. Giblin,² Masaya Kataoka,² Takeshi Karasawa,¹ and Akira Fujiwara¹ ¹NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan ²National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom

(Received 31 March 2016; accepted 1 June 2016; published online 5 July 2016)

Measuring electron pumps – a scaling problem

Quantum Metrology Institute

National Physical Laboratory

Measuring electron pumps – NPL method

Measuring electron pumps – ULCA method

Drung et al, Rev. Sci. Instr. 84, 024703 (2015)

Direct scaling with CCC

Metallic pumps: F. Piquemal and G. Geneves, Metrologia **37**, 207 (2000) B. Steck et al, Metrologia **45**, 482 (2008)

Direct scaling with CCC

Measurement circuit

Cryogen-free CCC

Same CCC as used in SETSAW measurements: Janssen and Hartland, *Physica B* **284**, 1790 (2000)

• Additional issues with binary JVS quantisation and trapped flux – experiments are proof of principle.

CCC signal and noise

Full signal 320.4 pA $\Delta V_{\rm S} = 157.5 \text{ mV}$ $\Delta \Phi = 2.25 \Phi_0.$ (0.1 ppm is 0.225 $\mu \Phi_0$)

Noise \approx 12 fA / \sqrt{Hz} at 1 Hz S/N ratio \approx 38 ppm at 1 Hz

Full system – raw data

Measure pump current using CCC and conventional reference source

0.25 % of full signal 5.7 m Φ_0 .

(Squid linearity was better than 0.01 %)

Stability over ≈13 hours

Result expressed as pump current

- First direct measurement of current from a tunablebarrier electron pump using a CCC
- We tried it....
- Some things worked squid stability
- Some things didn't work JVS flux trapping

Department for Business Innovation & Skills

FUNDED BY BIS

The National Physical Laboratory is operated by NPL Management Ltd, a whollyowned company of the Department for Business, Innovation and Skills (BIS).

Metrology 'triangle'

JVS

Pump current only

Use pump to calibrate sensitivity of CCC \approx 6.4 μA turns / Φ_0

