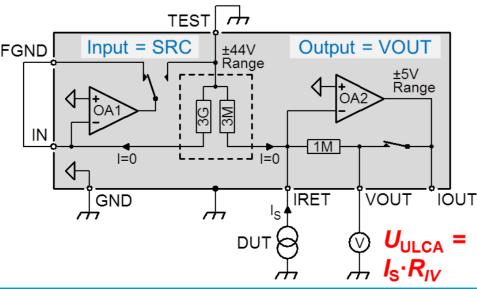
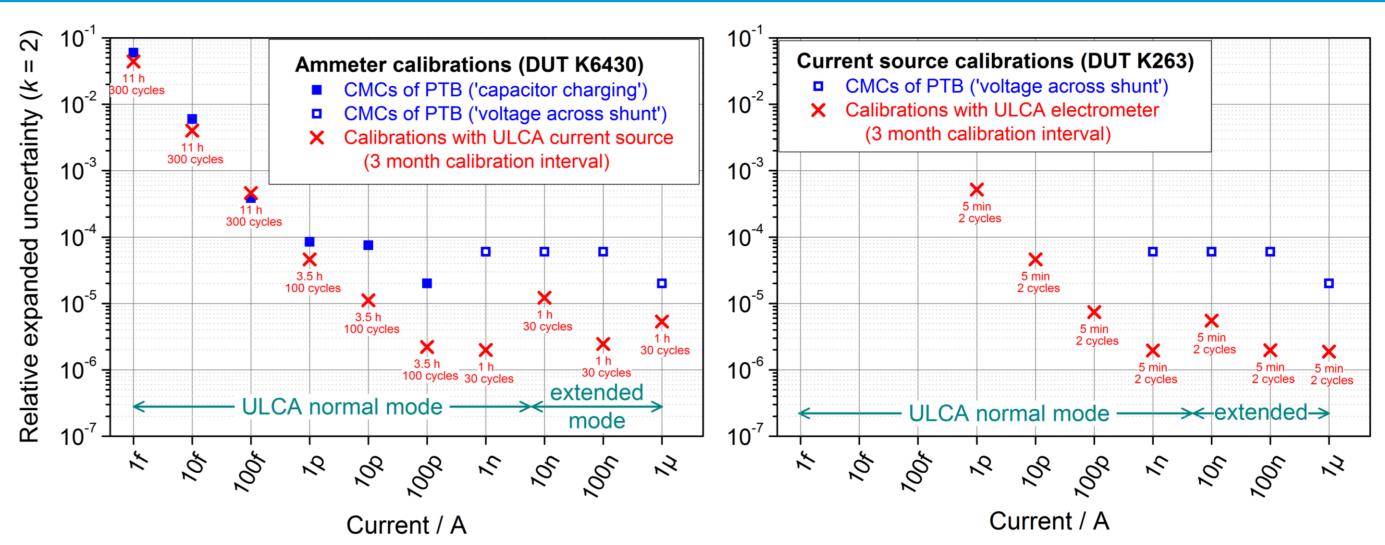

Abstract


We report on new calibration methods for picoammeters and low-current sources. The 'Ultrastable Lownoise Current Amplifier' (ULCA) was used for the calibration of commercial state-of-the-art ammeter and

Effective transresistance A_{TR}	$1\mathrm{G}\Omega$ (
Temperature coefficient of A_{TR}	0.2 ppr
Long-term stability of A_{TR}	drift <
Fluctuations of A_{TR} in 1 week	0.1 ppr
Input current range	±5 nA
Input impedance	< 1 Ω
Effective input noise	2.4 fA/
1/ <i>f</i> -noise corner	< 1 mH

Calibration of a picoammeter (example)

Device under test (DUT): Picoammeter type K6430


Uncertainty analysis

for DUT picoammeter type K6430 and voltmeter type 3458A

Type-A (k = 1)

						$\mathbf{I} \mathbf{Y} \mathbf{P} \mathbf{C}^{-} \mathbf{D} \left(\mathbf{N} = \mathbf{I} \right)$				
Calibration current	Picoammeter DUT range	ULCA mode	Type-A uncertainty vs. total measurement duration (number of cycles, each 128 s)				Component	Distribution	Comment	Type-B uncertainty 1 month (3 months) after cal.
Nominal	Туре К6430	Calibrator	1 h	3.5 h	11 h	Calibration	Noise	Normal	Sampling time $\tau \approx 1 \text{ h } A_{\text{TR}}$	0.01 μΑ/Α
value		source	(30 cycles)	(100 cycles)	(300 cycles)	of ULCA with PTB's 14-bit CCC	SQUID nonlinearity	Rectangular	$ \Delta \Phi < 0.5 \mu \Phi_0$	0.008 μA/A
± 1 fA	1 pA	normal	67 mA/A	37 mA/A	22 mA/A		ССС	Rectangular	Comparator incl. electronics	0.002 μA/A
± 10 fA	1 pA	normal	6.3 mA/A	3.5 mA/A	2.0 mA/A	Application of ULCA as	Settling	Rectangular	5 s wait after current reversal	0.008 μA/A
± 100 fA	1 pA	normal	0.71 mA/A	0.40 mA/A	0.23 mA/A		Temperature	Rectangular	Temp. uncertainty < 0.1 K	0.002 μA/A
±1pA	1 pA	normal	70 µA/A	40 µA/A	23 μΑ/Α		Resistor nonlinearity	-	From PCR or VCR	0.01 μΑ/Α
± 10 pA	10 pA	normal	10 µA/A	5.5 μA/A	3.0 µA/A			Rectangular		•
± 100 pA	100 pA	normal	1.0 μA/A	0.6 μΑ/Α	0.3 μA/A	calibrator	Amplifier nonlinearity	Rectangular	Open-loop gain > 10 ⁹	0.001 μΑ/Α
		normal		0.0 μΑ/Α	0.5 μΑγΑ		A _{TR} stability (long-term)	Rectangular	Upper limit 5 ppm/year	0.24 μA/A (0.72 μA/A)
±1nA	1 nA	normal	0.35 μA/A				A_{TR} fluctuations (short-t.)	Rectangular	Within 1 week	0.06 µA/A
± 10 nA	10 nA	extended	6.0 μA/A	3.5 µA/A	2.0 µA/A		Voltmeter gain calibration	Rectangular	3458A calibrated with Zener	0.06 μΑ/Α
± 100 nA	100 nA	extended	0.8 μΑ/Α	0.4 μA/A	0.25 μA/A	Other	ũ	_	3458A w. 'high stability' opt.	0.19 μΑ/Α (0.58 μΑ/Α)
±1μΑ	1 μΑ	extended	2.5 μA/A	1.4 μA/A	0.8 μA/A		Voltmeter gain stability	Rectangular	5456A w. High stability opt.	
± 1 μπ	- hu	extended	2.0 pr 477	2.1 pr. 7.1	0.0 pr // /	Total				0.32 μΑ/Α (0.93 μΑ/Α)

Results, conclusions & outlook

In summary, the ULCA provides several significant advantages compared with other calibration methods for electrometers and low-current sources:

- calibration uncertainties can be reduced at moderate measurement times,
- ii. only one calibrator instrument can replace at least two different setups for calibrations over nine decades of current, and

iii. calibration procedures are simplified by the ease in operation and handling offered by the ULCA.

Outlook: Besides the 'standard' version, further ULCA variants for special application purposes are currently under development [5, 6], for instance an instrument with further reduced input current noise level of only 1.2 fA/VHz.

References

- [1] D. Drung, C. Krause, U. Becker, H. Scherer, and F. J. Ahlers, *Rev. Sci. Instrum.* 86, 024703 (2015)
- [2] D. Drung, M. Götz, E. Pesel, and H. Scherer, IEEE Trans. Instrum. Meas. 64, 3021-3030 (2015)
- [3] D. Drung et al., Metrologia **52**, 756-763 (2015)
- [4] F. Stein *et al., Appl. Phys. Lett.* **107**, 103501 (2015)
- [5] D. Drung and C. Krause, CPEM 2016 Conference Digest (2016), oral session Mo-6 Current I
- [6] C. Krause, H. Scherer, and D. Drung, CPEM 2016 Conference Digest (2016), poster session Tu-PS4 Current
- [7] Magnicon GmbH, Barkhausenweg 11, 22339 Hamburg, Germany. http://www.magnicon.com/metrology/

Type-B (k = 1)